PIC Basic Compiler Library Support
The library support is a new way for the basic statements implementation.
This is indeed an advanced feature, however that is a way that can be used by both the author and the users to extend the compiler language from the external library files.
The information is loaded by the compiler from the external textual .lib files stored in the OshonSoft application data folder.
OshonSoft .lib files are well documented with comments covering all the currently available features of the library support compiler engine.
Library files can be edited by Notepad, or any other plain text editor.
Library files selection:
• oshonsoftpic.lib
• oshonsoftpic-adc.lib
• oshonsoftpic-uart.lib
oshonsoftpic.lib file:
//the concept is that one library group contains the implementation of one new language functionality - one or more related statements or functions
//library items contain different implementations of the same functionality for different groups of microcontrollers
//#lib_item_begin must be followed by #processor
//#statement_begin, #statement_type, #argument sequence must be fulfilled for proper library load
//#processor comma-separated list of processors, x can be used as a wild card character
//#processor can be used in multiple lines to quote all devices if needed
//#parameter is used to implement #define parameters needed for the statement implementation
//#parameter const, parameter_name, allowed_range, default_value
//#parameter symbol, parameter_name, type (pin, bit, byte, address of), system_bit or system_register
//'pin' type is used for the bits in the PORT registers
//'address of' type will implement a constant parameter
//#variable is used to declare global system variables
//#variable variable_name, type (byte, word, long, single, string)
//#statement_begin statement_name [argument1_name[, argument2_name[, ...]]]
//#statement_type type (procedure; inline; function, f_type (byte, word, long, single, string))
//#argument argument_name, type (const xx, byte, byte system xx, word, word system xx, long, long system xx, single, string), passing_type
//the default type of the system variables can not be changed with #argument
//passing_type (byval, byval allowed_constant_range, byref, byrefout) for statement_type procedure and inline
//passing_type (byval, byval allowed_constant_range) for statement_type function
//allowed_constant_range can contain arithmetic expressions in brackets, like 0-[EEPROM_Num-1]
//used to define parameters and statements that are not available or not applicable for the current item devices
//#parameter n/a, parameter_name
//#statement n/a, statement_name
//used to define alternative names for the parameter and statement names defined in the library group
//#alias_for <library_defined_element_name>, <new_alternative_name>
//used to define code variations among processors when only one or more register names in the code should be replaced with their alternatives
//#alternate_reg_name <register_name_used_in_code>, <alternate_register_name>
//code section can contain both inline assembler and basic language lines of code
//symbol and const parameters can be used directly in the assembler lines of code
//calculate[] or calc[] macro is available for double precision calculations
//calculate[] must be used to enter the parameter value in the basic code, will be replaced with the value of the parameter
//calculate[] can be used to perform one arithmetic operation, will be replaced with the value of the result
//calc[] arithmetic operators: +, -, *, /, % (modulus or remainder operator), \ (division returning integer result)
//calc[] macros can be nested
//reg_addr[] macro will be replaced with the register address; if not found, -1 is returned
//Clock_Freq in MHz is available as an argument
//Flash_Num and EEPROM_Num (total number of memory locations) are available as arguments
//int_val() and abs_val() functions are available for getting integer or absolute values of the argument
//int_val() and abs_val() can be used on one or both arguments in calc[] expression, and/or on the whole expression
//#if [], #endif macro is available
//#if comparison operators: ==,<>,<,>,<=,>=
//#if [] macro can be used without #endif when followed by one operation in the same line
//for example: #if [libtemp3 > 0.5] #math libtemp2 = calc[libtemp2 + 1]
//for example: #if [ADC_Clk > 3] bsf ADCON1,ADCS2
//'const' statement argument type can be used to load the numeric value into one of the library engine temp variables libtemp0-libtemp99
//for const arguments only 'byval' and 'byval allowed_constant_range' passing types are allowed
//#math directive is used to assign numeric value or the result of calc[] expression to one libtempxx variable
//for example: #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 4]] //exact baud rate achieved
//#if macro also works with libtemp0-libtemp99 variables
//desired info can be inserted as a comment in the generated assembler source with the #echo directive
//#echo is followed by a string that can contain temp variable names to be replaced with their numeric values
//for example: #echo "exact baud rate achieved = libtemp8; bit period = libtemp7µs; baud rate error = libtemp6%"
//when calling 'procedure' type statements with one 'byval' byte argument declared, library engine will accept multiple comma-separated arguments
//for that purpose #statement_accept_multiple_arguments directive should be placed after #statement_type
//variables are passed byte by byte starting from the lowest byte; string constants can be used, along with symbolic constants Qt, CrLf, Cr, Lf
//decimal representation of a variable can be passed to the procedure by using the # prefix before the variable name
//#break_for_string_argument directive
//for string variables and decimal representations (argument in the form #variable_name)
//library engine will load FSR register with address of zero-terminated string prepared in memory
//and call the procedure at position of the #break_for_string_argument directive in the procedure code
//when calling 'procedure' type statements with one 'byrefout' byte argument declared, library engine will also accept multiple comma-separated arguments
//variables are filled in byte by byte starting from the lowest byte
//be careful that basic statements like WaitUs also make use of the system registers and can alter those values
//when using inline assembler code, be careful that basic statements expect to be called with BANK zero selected
//#banksel register_name_or_address
//#banksel directive should be used before any register access with assembler code, in order to use the compiler internal memory banking optimizations
//special function registers are declared in basic code as byte variables; if needed, this byte variable type can be changed with #redim directive
//#redim register_name new_type (byte, word, long, single)
//#pagesel directive should be used before all the GOTO and CALL instructions in the code
//#pagesel will be used by the compiler to setup the appropriate page bits in the PCLATH register for the next GOTO or CALL instruction
//list of available compiler system byte registers (bank 0): R0L, R0H, R1L, R1H, R2L, R2H, R3L, R3H, R4L, R4H, R5L, R5H
//list of available compiler system word registers (bank 0): R0HL, R1HL, R2HL, R3HL, R4HL, R5HL
//list of available compiler system long registers (bank 0): R1HL0HL, R3HL2HL, R5HL4HL
oshonsoftpic-adc.lib file:
#lib_name OshonSoft ADC Module Library
//ADC_Read statement
#lib_group_begin
//for backward compatibility
#alias_for ADC_Sample_uS, ADC_SAMPLEUS
#alias_for ADC_Clk, ADC_CLOCK
#alias_for ADC_Read, Adcin
#lib_item_begin
//ADCON0, bank0,
//ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE — ADON
//ADCON1, bank1,
//ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFG0
//ADFM ADCS2 VCFG1 VCFG0 — — — — //v2
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f873a, 16f874a, 16f876a, 16f877a
#processor 16f818, 16f819
#processor 16f88 //v2
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
bsf ADCON1,ADFM
#if [ADC_Clk > 3] bsf ADCON1,ADCS2
#if [ADC_Clk <= 3] bcf ADCON1,ADCS2
#banksel 0
rlf R0L,f
rlf R0L,f
rlf R0L,f
movlw 0x38
andwf R0L,f
movlw calc[calc[calc[ADC_Clk * 64] % 256] + 1] //1-ADON
iorwf R0L,w
movwf ADCON0
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE — ADON
//ADCON1, bank1,
//ADFM — — — PCFG3 PCFG2 PCFG1 PCFG0
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f873, 16f874, 16f876, 16f877
#processor 16f870, 16f871
#processor 16f872
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-3, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
bsf ADCON1,ADFM
#banksel 0
rlf R0L,f
rlf R0L,f
rlf R0L,f
movlw 0x38
andwf R0L,f
movlw calc[calc[ADC_Clk * 64] + 1] //1-ADON
iorwf R0L,w
movwf ADCON0
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE — ADON
//ADCON1, bank1,
//— — — — — PCFG2 PCFG1 PCFG0
//ADRES, bank0,
//PIR1.ADIF, bank0,
#processor 16f73, 16f74, 16f76, 16f77
#processor 16f72
#processor 16f716
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-3, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, byte system ADRES, byrefout
#code_begin
//
rlf R0L,f
rlf R0L,f
rlf R0L,f
movlw 0x38
andwf R0L,f
movlw calc[calc[ADC_Clk * 64] + 1] //1-ADON
iorwf R0L,w
movwf ADCON0
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON, bank0,
//ADCS2 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE ADON
//ADRES, bank0,
//PIR1.ADIF, bank0,
#processor 10f320, 10f322
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, byte system ADRES, byrefout
#code_begin
//
rlf R0L,f
rlf R0L,f
movlw 0x1c
andwf R0L,f
movlw calc[calc[ADC_Clk * 32] + 1] //1-ADON
iorwf R0L,w
movwf ADCON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON,GO
l1:
#pagesel
btfsc ADCON,GO
goto l1
bcf ADCON,ADON
bcf PIR1,ADIF
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//— — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON
//ADCON1, bank1,
//— ADCS2 ADCS1 ADCS0 — — ADREF1 ADREF0
//ADRES, bank0,
//PIR1.ADIF, bank0,
#processor 16f722, 16f723, 16f724, 16f726, 16f727
#processor 16f707
#processor 16f722a, 16f723a
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-15
#argument adc_result, byte system ADRES, byrefout
#code_begin
//
#banksel ADCON1
movlw 0x0f
andwf ADCON1,f
movlw calc[ADC_Clk * 16]
iorwf ADCON1,f
#banksel 0
rlf R0L,f
rlf R0L,f
movlw 0x3c
andwf R0L,w
movwf ADCON0
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//— — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON
//ADCON1, bank1,
//— ADCS2 ADCS1 ADCS0 — — — —
//ADRES, bank0,
//PIR1.ADIF, bank0,
#processor 16f720, 16f721
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-15
#argument adc_result, byte system ADRES, byrefout
#code_begin
//
#banksel ADCON1
movlw calc[ADC_Clk * 16]
movwf ADCON1
#banksel 0
rlf R0L,f
rlf R0L,f
movlw 0x3c
andwf R0L,w
movwf ADCON0
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADFM VCFG CHS3 CHS2 CHS1 CHS0 GO/DONE ADON
//ADCON1, bank1,
//— ADCS2 ADCS1 ADCS0 — — — —
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f677, 16f685, 16f687, 16f689, 16f690
#processor 16f785
#processor 16f616
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-15
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
movlw calc[ADC_Clk * 16]
movwf ADCON1
#banksel 0
bsf ADCON0,ADFM
movlw 0xc0
andwf ADCON0,f
rlf R0L,f
rlf R0L,f
movlw 0x3c
andwf R0L,w
iorwf ADCON0,f
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADFM VCFG — CHS2 CHS1 CHS0 GO/DONE ADON
//ADCON1, bank1,
//— ADCS2 ADCS1 ADCS0 — — — —
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f684
#processor 16f688
#processor 16f676
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
movlw calc[ADC_Clk * 16]
movwf ADCON1
#banksel 0
bsf ADCON0,ADFM
movlw 0xc0
andwf ADCON0,f
rlf R0L,f
rlf R0L,f
movlw 0x1c
andwf R0L,w
iorwf ADCON0,f
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADFM VCFG1 VCFG0 CHS2 CHS1 CHS0 GO/DONE ADON
//ADCON1, bank1,
//— ADCS2 ADCS1 ADCS0 — — — —
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f913, 16f914, 16f916, 16f917, 16f946
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
movlw calc[ADC_Clk * 16]
movwf ADCON1
#banksel 0
bsf ADCON0,ADFM
movlw 0xe0
andwf ADCON0,f
rlf R0L,f
rlf R0L,f
movlw 0x1c
andwf R0L,w
iorwf ADCON0,f
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADFM VCFG — — CHS1 CHS0 GO/DONE ADON
//ANSEL, bank1,
//— ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 12f675
#processor 12f683
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-3
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ANSEL
movlw 0x0f
andwf ANSEL,f
movlw calc[ADC_Clk * 16]
iorwf ANSEL,f
#banksel 0
bsf ADCON0,ADFM
movlw 0xc0
andwf ADCON0,f
rlf R0L,f
rlf R0L,f
movlw 0x0c
andwf R0L,w
iorwf ADCON0,f
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADFM VCFG — CHS2 CHS1 CHS0 GO/DONE ADON
//ANSEL, bank1,
//— ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 12f615, 12f617
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-7
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ANSEL
movlw 0x0f
andwf ANSEL,f
movlw calc[ADC_Clk * 16]
iorwf ANSEL,f
#banksel 0
bsf ADCON0,ADFM
movlw 0xc0
andwf ADCON0,f
rlf R0L,f
rlf R0L,f
movlw 0x1c
andwf R0L,w
iorwf ADCON0,f
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADFM — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON
//ADFM VCFG CHS3 CHS2 CHS1 CHS0 GO/DONE ADON //v2
//ADCON1, bank0,
//— ADCS2 ADCS1 ADCS0 — — — ADPREF1
//— ADCS2 ADCS1 ADCS0 — — — — //v2
//ADRESL, bank0,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f753
#processor 12f752 //v2
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-15
#argument adc_result, word system ADRESL, byrefout
#code_begin
//
#redim ADRESL word
movlw 0x0f
andwf ADCON1,f
movlw calc[ADC_Clk * 16]
iorwf ADCON1,f
bsf ADCON0,ADFM
movlw 0xc0
andwf ADCON0,f
rlf R0L,f
rlf R0L,f
movlw 0x3c
andwf R0L,w
iorwf ADCON0,f
bsf ADCON0,ADON
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE CHS3 ADON
//ADCON1, bank1,
//ADFM ADCS2 VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0
//ADCON2, bank1,
//— — ACQT2 ACQT1 ACQT0 — — —
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f737, 16f747, 16f767, 16f777
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-7, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-15
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
bsf ADCON1,ADFM
#if [ADC_Clk > 3] bsf ADCON1,ADCS2
#if [ADC_Clk <= 3] bcf ADCON1,ADCS2
clrf ADCON2
#banksel 0
clrf ADCON0
btfsc R0L,3
bsf ADCON0,CHS3
rlf R0L,f
rlf R0L,f
rlf R0L,f
movlw 0x38
andwf R0L,f
movlw calc[calc[calc[ADC_Clk * 64] % 256] + 1] //1-ADON
iorwf R0L,w
iorwf ADCON0,f
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//ADCON0, bank0,
//ADCS1 ADCS0 CHS3 CHS2 CHS1 CHS0 GO/DONE ADON
//ADCON1, bank1,
//ADFM — VCFG1 VCFG0 — — — —
//ADRESL, bank1,
//ADRESH, bank0,
//PIR1.ADIF, bank0,
#processor 16f882, 16f883, 16f884, 16f886, 16f887
#parameter const, ADC_Sample_uS, 0-255, 20
#parameter const, ADC_Clk, 0-3, 3
#statement_begin ADC_Read adc_channel, adc_result
#statement_type procedure
#argument adc_channel, byte system R0L, byval 0-15
#argument adc_result, word system R1HL, byrefout
#code_begin
//
#banksel ADCON1
bsf ADCON1,ADFM
#banksel 0
rlf R0L,f
rlf R0L,f
movlw 0x3c
andwf R0L,f
movlw calc[calc[ADC_Clk * 64] + 1] //1-ADON
iorwf R0L,w
movwf ADCON0
//
WaitUs calculate[ADC_Sample_uS]
//
bsf ADCON0,GO
l1:
#pagesel
btfsc ADCON0,GO
goto l1
bcf ADCON0,ADON
bcf PIR1,ADIF
R1L = ADRESL
R1H = ADRESH
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f87
#processor 16f83, 16f84
#processor 16f84a
#processor 16f627, 16f628
#processor 16f627a, 16f628a, 16f648a
#processor 12f635, 16f636, 16f639
#processor 16f631
#processor 16f630
#processor 12f629
#processor 16f610
#processor 12f609
#parameter n/a, ADC_Sample_uS
#parameter n/a, ADC_Clk
#statement n/a, ADC_Read
#lib_item_end
#lib_group_end
#lib_group_begin //All_Digital statement
//for backward compatibility
#alias_for All_Digital, AllDigital
#lib_item_begin
#processor 16f873, 16f874, 16f876, 16f877
#processor 16f870, 16f871
#processor 16f872
#processor 16f818, 16f819
#processor 16f627, 16f628
#processor 16f627a, 16f628a, 16f648a
#processor 16f87, 16f88
#processor 16f73, 16f74, 16f76, 16f77
#processor 16f72
#processor 16f873a, 16f874a, 16f876a, 16f877a
#processor 16f716
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[ADCON1] >= 0] ADCON1 = 0x06
#if [reg_addr[CMCON] >= 0] CMCON = 0x07
#if [reg_addr[VRCON] >= 0] VRCON.VROE = 0
#if [reg_addr[CVRCON] >= 0] CVRCON.CVROE = 0
#if [reg_addr[ANSEL] >= 0] ANSEL = 0x00
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 12f629, 12f675
#processor 16f630, 16f676
#processor 12f683
#processor 16f684
#processor 16f688
#processor 16f913, 16f914, 16f916, 16f917, 16f946
#processor 12f635, 16f636, 16f639
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[CMCON] >= 0] CMCON = 0x07
#if [reg_addr[CMCON0] >= 0] CMCON0 = 0x07
#if [reg_addr[ANSEL] >= 0] ANSEL = 0x00
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f737, 16f747, 16f767, 16f777
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[ADCON1] >= 0] ADCON1 = 0x0f
#if [reg_addr[CMCON] >= 0] CMCON = 0x07
#if [reg_addr[CVRCON] >= 0] CVRCON.CVROE = 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f631, 16f677, 16f685, 16f687, 16f689, 16f690
#processor 16f610, 16f616
#processor 12f609, 12f615, 12f617
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[ANSEL] >= 0] ANSEL = 0x00
#if [reg_addr[ANSELH] >= 0] ANSELH = 0x00
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f882, 16f883, 16f884, 16f886, 16f887
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[ANSEL] >= 0] ANSEL = 0x00
#if [reg_addr[ANSELH] >= 0] ANSELH = 0x00
#if [reg_addr[VRCON] >= 0] VRCON.VROE = 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f785
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[ANSEL0] >= 0] ANSEL0 = 0x00
#if [reg_addr[ANSEL1] >= 0] ANSEL1 = 0x00
#if [reg_addr[REFCON] >= 0] REFCON.VROE = 0
#if [reg_addr[REFCON] >= 0] REFCON.CVROE = 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f722, 16f723, 16f724, 16f726, 16f727
#processor 16f707
#processor 16f722a, 16f723a
#processor 16f720, 16f721
#processor 10f320, 10f322
#processor 12f752
#processor 16f753
#statement_begin All_Digital
#statement_type inline
#code_begin
//
#if [reg_addr[ANSELA] >= 0] ANSELA = 0x00
#if [reg_addr[ANSELB] >= 0] ANSELB = 0x00
#if [reg_addr[ANSELC] >= 0] ANSELC = 0x00
#if [reg_addr[ANSELD] >= 0] ANSELD = 0x00
#if [reg_addr[ANSELE] >= 0] ANSELE = 0x00
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f83, 16f84
#processor 16f84a
#statement n/a, All_Digital
#lib_item_end
#lib_group_end
oshonsoftpic-uart.lib file:
#lib_name OshonSoft UART Library
//UART_Init, UART_Write, UART_Read, UART_Get statements
#lib_group_begin
#alias_for UART_Init, UART1_Init
#alias_for UART_Write, UART1_Write
#alias_for UART_Read, UART1_Read
#alias_for UART_Get, UART1_Get
//for backward compatibility
#alias_for UART_Init, Hseropen
#alias_for UART_Write, Hserout
#alias_for UART_Read, Hserin
#alias_for UART_Get, Hserget
#lib_item_begin
//TXREG, bank0,
//TXSTA, bank1, bank0 //v3,
//CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
//RCREG, bank0,
//RCSTA, bank0,
//SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
//BAUDCTL, bank3, bank1 //v2, bank0 //v3,
//ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN
//SPBRG, bank1, bank0 //v3,
//SPBRGH, bank1, bank0 //v3,
//PIR1.TXIF, bank0,
//PIR1.RCIF, bank0,
#processor 16f882, 16f883, 16f884, 16f886, 16f887
#processor 16f687, 16f689, 16f690 //v2
#processor 16f688 //V3
#statement_begin UART_Init baud_rate
#statement_type inline
#argument baud_rate, const libtemp0, byval 100-1000000
#code_begin
//
#math libtemp10 = 1 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 4] - 1]
#math libtemp2 = calc[int_val(libtemp1)] //SPBRG value
#math libtemp3 = calc[abs_val(libtemp2 - libtemp1)]
#if [libtemp3 > 0.5] #math libtemp2 = calc[libtemp2 + 1]
//
#math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 4]] //exact baud rate achieved
#math libtemp7 = calc[1000000 / libtemp8] //bit period
#math libtemp6 = calc[calc[calc[abs_val(libtemp8 - libtemp0)] / libtemp0] * 100] //baud rate error
#math libtemp6 = calc[int_val(calc[libtemp6 * 100]) / 100] //round to 2 decimal places
#echo "exact baud rate achieved = libtemp8; bit period = libtemp7µs; baud rate error = libtemp6%"
//
#banksel SPBRG
movlw calc[libtemp2 % 256]
movwf SPBRG
movlw calc[libtemp2 \ 256]
movwf SPBRGH
#banksel BAUDCTL
clrf BAUDCTL
#if [libtemp10 == 1] bsf BAUDCTL,BRG16
#banksel TXSTA
#if [libtemp10 == 1] movlw 0x24 //TXEN, BRGH
movwf TXSTA
#banksel RCSTA
movlw 0x90 //SPEN, CREN
movwf RCSTA
#banksel 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//TXREG, bank0,
//TXSTA, bank1,
//CSRC TX9 TXEN SYNC — BRGH TRMT TX9D
//RCREG, bank0,
//RCSTA, bank0,
//SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
//SPBRG, bank1,
//PIR1.TXIF, bank0,
//PIR1.RCIF, bank0,
#processor 16f913, 16f914, 16f916, 16f917, 16f946
#processor 16f722, 16f723, 16f724, 16f726, 16f727
#processor 16f722a, 16f723a
#processor 16f720, 16f721
#processor 16f707
#statement_begin UART_Init baud_rate
#statement_type inline
#argument baud_rate, const libtemp0, byval 100-1000000
#code_begin
//
#math libtemp10 = 1 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 16] - 1]
#if [libtemp1 > 250]
#math libtemp10 = 2 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 64] - 1]
#endif
#math libtemp2 = calc[int_val(libtemp1)] //SPBRG value
#math libtemp3 = calc[abs_val(libtemp2 - libtemp1)]
#if [libtemp3 > 0.5] #math libtemp2 = calc[libtemp2 + 1]
//
#if [libtemp10 == 1] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 16]] //exact baud rate achieved
#if [libtemp10 == 2] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 64]] //exact baud rate achieved
#math libtemp7 = calc[1000000 / libtemp8] //bit period
#math libtemp6 = calc[calc[calc[abs_val(libtemp8 - libtemp0)] / libtemp0] * 100] //baud rate error
#math libtemp6 = calc[int_val(calc[libtemp6 * 100]) / 100] //round to 2 decimal places
#echo "exact baud rate achieved = libtemp8; bit period = libtemp7µs; baud rate error = libtemp6%"
//
#banksel SPBRG
movlw calc[libtemp2]
movwf SPBRG
#banksel TXSTA
#if [libtemp10 == 1] movlw 0x24 //TXEN, BRGH
#if [libtemp10 == 2] movlw 0x20 //TXEN
movwf TXSTA
#banksel RCSTA
movlw 0x90 //SPEN, CREN
movwf RCSTA
#banksel 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//TXREG, bank0,
//TXSTA, bank1,
//CSRC TX9 TXEN SYNC — BRGH TRMT TX9D
//RCREG, bank0,
//RCSTA, bank0,
//SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
//SPEN RX9 SREN CREN — FERR OERR RX9D //v2
//SPBRG, bank1,
//PIR1.TXIF, bank0,
//PIR1.RCIF, bank0,
#processor 16f873a, 16f874a, 16f876a, 16f877a
#processor 16f873, 16f874, 16f876, 16f877
#processor 16f870, 16f871
#processor 16f737, 16f747, 16f767, 16f777
#processor 16f73, 16f74, 16f76, 16f77 //v2
#statement_begin UART_Init baud_rate
#statement_type inline
#argument baud_rate, const libtemp0, byval 100-1000000
#code_begin
//
#math libtemp10 = 1 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 16] - 1]
#if [libtemp1 > 250]
#math libtemp10 = 2 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 64] - 1]
#endif
#math libtemp2 = calc[int_val(libtemp1)] //SPBRG value
#math libtemp3 = calc[abs_val(libtemp2 - libtemp1)]
#if [libtemp3 > 0.5] #math libtemp2 = calc[libtemp2 + 1]
//
#if [libtemp10 == 1] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 16]] //exact baud rate achieved
#if [libtemp10 == 2] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 64]] //exact baud rate achieved
#math libtemp7 = calc[1000000 / libtemp8] //bit period
#math libtemp6 = calc[calc[calc[abs_val(libtemp8 - libtemp0)] / libtemp0] * 100] //baud rate error
#math libtemp6 = calc[int_val(calc[libtemp6 * 100]) / 100] //round to 2 decimal places
#echo "exact baud rate achieved = libtemp8; bit period = libtemp7µs; baud rate error = libtemp6%"
//
#banksel TRISC
bsf TRISC,6
bsf TRISC,7
#banksel SPBRG
movlw calc[libtemp2]
movwf SPBRG
#banksel TXSTA
#if [libtemp10 == 1] movlw 0x24 //TXEN, BRGH
#if [libtemp10 == 2] movlw 0x20 //TXEN
movwf TXSTA
#banksel RCSTA
movlw 0x90 //SPEN, CREN
movwf RCSTA
#banksel 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//TXREG, bank0,
//TXSTA, bank1,
//CSRC TX9 TXEN SYNC — BRGH TRMT TX9D
//RCREG, bank0,
//RCSTA, bank0,
//SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
//SPBRG, bank1,
//PIR1.TXIF, bank0,
//PIR1.RCIF, bank0,
#processor 16f87, 16f88
#statement_begin UART_Init baud_rate
#statement_type inline
#argument baud_rate, const libtemp0, byval 100-1000000
#code_begin
//
#math libtemp10 = 1 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 16] - 1]
#if [libtemp1 > 250]
#math libtemp10 = 2 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 64] - 1]
#endif
#math libtemp2 = calc[int_val(libtemp1)] //SPBRG value
#math libtemp3 = calc[abs_val(libtemp2 - libtemp1)]
#if [libtemp3 > 0.5] #math libtemp2 = calc[libtemp2 + 1]
//
#if [libtemp10 == 1] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 16]] //exact baud rate achieved
#if [libtemp10 == 2] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 64]] //exact baud rate achieved
#math libtemp7 = calc[1000000 / libtemp8] //bit period
#math libtemp6 = calc[calc[calc[abs_val(libtemp8 - libtemp0)] / libtemp0] * 100] //baud rate error
#math libtemp6 = calc[int_val(calc[libtemp6 * 100]) / 100] //round to 2 decimal places
#echo "exact baud rate achieved = libtemp8; bit period = libtemp7µs; baud rate error = libtemp6%"
//
#banksel TRISB
bsf TRISB,2
bsf TRISB,5
#banksel SPBRG
movlw calc[libtemp2]
movwf SPBRG
#banksel TXSTA
#if [libtemp10 == 1] movlw 0x24 //TXEN, BRGH
#if [libtemp10 == 2] movlw 0x20 //TXEN
movwf TXSTA
#banksel RCSTA
movlw 0x90 //SPEN, CREN
movwf RCSTA
#banksel 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
//TXREG, bank0,
//TXSTA, bank1,
//CSRC TX9 TXEN SYNC — BRGH TRMT TX9D
//RCREG, bank0,
//RCSTA, bank0,
//SPEN RX9 SREN CREN ADEN FERR OERR RX9D
//SPBRG, bank1,
//PIR1.TXIF, bank0,
//PIR1.RCIF, bank0,
#processor 16f627a, 16f628a, 16f648a
#processor 16f627, 16f628
#statement_begin UART_Init baud_rate
#statement_type inline
#argument baud_rate, const libtemp0, byval 100-1000000
#code_begin
//
#math libtemp10 = 1 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 16] - 1]
#if [libtemp1 > 250]
#math libtemp10 = 2 //baud rate generator mode
#math libtemp1 = calc[calc[calc[calc[Clock_Freq * 1000000] / libtemp0] / 64] - 1]
#endif
#math libtemp2 = calc[int_val(libtemp1)] //SPBRG value
#math libtemp3 = calc[abs_val(libtemp2 - libtemp1)]
#if [libtemp3 > 0.5] #math libtemp2 = calc[libtemp2 + 1]
//
#if [libtemp10 == 1] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 16]] //exact baud rate achieved
#if [libtemp10 == 2] #math libtemp8 = calc[calc[Clock_Freq * 1000000] / calc[calc[libtemp2 + 1] * 64]] //exact baud rate achieved
#math libtemp7 = calc[1000000 / libtemp8] //bit period
#math libtemp6 = calc[calc[calc[abs_val(libtemp8 - libtemp0)] / libtemp0] * 100] //baud rate error
#math libtemp6 = calc[int_val(calc[libtemp6 * 100]) / 100] //round to 2 decimal places
#echo "exact baud rate achieved = libtemp8; bit period = libtemp7µs; baud rate error = libtemp6%"
//
#banksel TRISB
bsf TRISB,1
bsf TRISB,2
#banksel SPBRG
movlw calc[libtemp2]
movwf SPBRG
#banksel TXSTA
#if [libtemp10 == 1] movlw 0x24 //TXEN, BRGH
#if [libtemp10 == 2] movlw 0x20 //TXEN
movwf TXSTA
#banksel RCSTA
movlw 0x90 //SPEN, CREN
movwf RCSTA
#banksel 0
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f882, 16f883, 16f884, 16f886, 16f887
#processor 16f687, 16f689, 16f690
#processor 16f688
#processor 16f913, 16f914, 16f916, 16f917, 16f946
#processor 16f873a, 16f874a, 16f876a, 16f877a
#processor 16f873, 16f874, 16f876, 16f877
#processor 16f870, 16f871
#processor 16f737, 16f747, 16f767, 16f777
#processor 16f73, 16f74, 16f76, 16f77
#processor 16f722, 16f723, 16f724, 16f726, 16f727
#processor 16f722a, 16f723a
#processor 16f720, 16f721
#processor 16f707
#processor 16f87, 16f88
#processor 16f627a, 16f628a, 16f648a
#processor 16f627, 16f628
#statement_begin UART_Write tx_data
#statement_type procedure
#statement_accept_multiple_arguments
#argument tx_data, byte system WREG, byval
#code_begin
//
l1:
#pagesel
btfsc PIR1,TXIF
goto l2
#pagesel
goto l1
l2:
movwf TXREG
//
#break_for_string_argument
l3:
movf INDF,w
btfsc STATUS,Z
return
incf FSR,f
#pagesel
call l1
#pagesel
goto l3
//
#code_end
#statement_end
#statement_begin UART_Read rx_data
#statement_type procedure
#statement_accept_multiple_arguments
#argument rx_data, byte system WREG, byrefout
#code_begin
//
l1:
#pagesel
btfsc PIR1,RCIF
goto l2
#pagesel
goto l1
l2:
movf RCREG,w
//
#code_end
#statement_end
#statement_begin UART_Get rx_data
#statement_type procedure
#argument rx_data, byte system WREG, byrefout
#variable UART_Data_Ready, byte
#code_begin
//
UART_Data_Ready = 0
clrw
#pagesel
btfss PIR1,RCIF
goto l1
UART_Data_Ready = 1
movf RCREG,w
l1:
//
#code_end
#statement_end
#lib_item_end
#lib_item_begin
#processor 16f84a
#processor 16f83, 16f84
#processor 16f872
#processor 16f818, 16f819
#processor 16f72
#processor 16f684
#processor 16f630, 16f676
#processor 12f629, 12f675
#processor 12f683
#processor 12f635, 16f636, 16f639
#processor 16f631, 16f677, 16f685
#processor 10f320, 10f322
#processor 12f609, 12f615, 12f617
#processor 12f752
#processor 16f610, 16f616
#processor 16f716
#processor 16f753
#processor 16f785
#statement n/a, UART_Init
#statement n/a, UART_Write
#statement n/a, UART_Read
#statement n/a, UART_Get
#lib_item_end
#lib_group_end